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Abstract--This paper describes the unsteady draining of a sealed tank partially filled with water. The water 
discharges via a vertical tube into an open tank at atmospheric conditions. The air inflow, compensating 
for the volume of the discharged liquid, enters the system in an oscillatory manner, much like the 
"gulping" seen in an upended beer bottle. A mathematical model, based closly on that derived by Dougall 
& Kathiresan [Chem. Engng Commun. 8, 289-304 (1981)], has been applied to predict the pressure 
fluctuations in the closed tank. The rate of water discharge from the tank has been predicted and gives 
a much closer agreement with experimental results than a prediction based on a steady counter-current 
flooding limitation approach. A drift flux model has been used to describe the two-phase flow effect in 
the tube and the Wallis flooding criterion has been modified for use in the slug flow regime to describe 
the boundary conditions at the bottom of the tube. The pressure fluctuations in the sealed tank have been 
measured and compared with results obtained from the mathematical prediction for a variety of tube 
diameters. 

Key Words: two-phase flow, pressure fluctuation, flooding, oscillatory flow, draining tank, bubbles, 
gulping 

1. I N T R O D U C T I O N  

One aspect of the discharge of a fluid from a vessel via a vertical pipe is recognized by all who 
have poured themselves a drink from an upended bottle, where the inflow of air, which makes up 
for the volume of the discharged liquid, restricts the discharge by an oscillatory process which may 
be called "gulping". Here the rate of discharge is markedly reduced during the time air ingestion 
occurs. A literature review shows that the mathematical or physical models for computing 
discharges from tanks when air is ingested through the outlet have received little attention, although 
the somewhat related problem of the condition required for a liquid discharge pipe to run full has 
been treated by Wallis et  al. (1977) and draining of punctured tanks without vacuum-relief has been 
considered by Dodge & Bowles (1982). In practice, excepting the work of Dougall & Kathiresan 
(1981), the available models take no account of the gulping nature of the discharge. 

The intention of the present work is to determine the rate of fluid discharge and the pressure 
fluctuations associated with the transient behaviour of a tank draining via a vertical tube. This 
problem is of importance in many aspects of two-phase flow and especially in the safety analysis 
of the counter-current flooding limitations in pressurized water nuclear reactors (PWR). 

This study is part of a wider investigation into oscillatory behaviour of transient counter-current 
two-phase flow in horizontal and vertical tubes which is relevant to loss of coolant accidents in 
PWR systems (Tehrani 1992). 

2. E X P E R I M E N T A L  A P P A R A T U S  

The experimental setup consisted of water flow from a partially-filled sealed tank measuring 
25 x 20.2 x 15.2 cm through a single vertical tube into an open tank at atmospheric pressure. The 
pressure in the sealed tank was measured by means of a differential pressure transducer. The signal 
from the transducer was amplified and converted into digital form using an A-D converter. A series 
interface was used to send the data to a PC for processing. The data were analysed using a fast 
Fourier transform algorithm to obtain the frequency response of the system. Experiments were 
carried out with various tube internal diameters between 9.0 and 25.4 mm with length 600 mm. The 

977 



978 

P r e s s .  T r a n s d u c e r  

P, 

Sealed Tank 

MaX. 

L 

1"3 

v e n t  

Water In let  

1 . _  

3 . _  

A . A . K .  TEHRANIetal.  

L, 

Liquid Bubble 
Oown Flow Rise 

I l l  
e r  

¢0 
UJ 
n -  

L 

Open Tank 
To Drain 

Figure 1. The experimental setup. 

MIn. 

Tank Repreeaurizatlon 

Liquid Refi l l  
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height of the liquid in the sealed tank was continuously recorded. The experimental arrangement 
is shown in figure 1. 

3. CYCLIC DISCHARGE BEHAVIOUR 

To describe the unsteady draining process of a sealed tank four distinct stages, as shown in 
figure 2, are considered. The four stages are: 

Liquid downflow. The liquid from the sealed tank flows down the tube thus causing 
a reduction in the air pressure above the liquid surface. When the pressure falls 
sufficiently below atmospheric, the liquid velocity in the tube is reduced to almost 
zero and the next stage of the cycle begins. 
Bubble rise. An air bubble is formed at the exit of the tube and rises, filling the tube. 
When the bubble reaches the top of the tube the next stage commences. 
Tank repressurization. Air is ingested rapidly through the tube increasing the pressure 
in the tank to the point where liquid can enter the tube, thus leading to liquid refill. 
Liquid refill. Liquid refills the tube from the top until no air remains in the tube, 
reducing the air pressure in the closed tank, and the whole cycle is then repeated with 
slowly decreasing frequency. 

It should be noted that figure 2 shows the first cycle of the process. Since at the beginning of the 
process the tube is full of water, the first liquid refill of the tube takes place at the start of the second 
cycle. 

4. THEORETICAL DEVELOPMENT 

The present mathematical model is closely based on the theoretical approach by Dougall & 
Kathiresan (1981), which was applied to the different but related geometry of flow though a vertical 
tube from a fixed head of water in an open upper tank to a sealed lower one. Consistency of 
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terminology and nomenclature is observed wherever possible. A number of individual descriptions 
have been brought together to define each stage of the cycle. The model involves parameters 
averaged over the complete tube or the portion of the tube above or below the two-phase interface 
and the flow is assumed to be one-dimensional. The liquid is incompressible and the flow in the 
tube is fully developed. Each stage of the process is discussed below. 

4. I. Liquid downflow model 
Conservation of momentum for the liquid in the tube integrated between stations 2 and 3 

(figure 1) is given by 

dVLdt [ 1  zPwL],pLA ] L = - ~ L ( P 2 - P 3 ) + g L  [11 

where V L is the liquid velocity in the tube, z is the tube wall shear stress, L and A are the length 
and the cross-sectional area of the tube, respecitvely, and P ,  is the tube perimeter. The direction 
of the Z-coordinate is vertically upwards and velocities are considered positive in this direction. 
Further, using the one-dimensional energy equation between stations 2 and 1 (figure 1): 

(P~-PI) =PL[g L. - ~--~ (1 + K~)], [2] 

where PL is the liquid density and K¢ is the sudden entry loss coefficient. From [1] and [2] the 
governing equation for the velocity of the liquid is 

dZL V(.P, = L, 
dt L pL L + g 1+-~ pL A C, 2L ' 

where 

Cr is the friction factor, and 

"~ = 0 . 5 C f p  L V 2, 

Re = pLDVL 
ktL 

[3] 

16 
for Re < 2500 Cf = R---e 

0.079 
and Re > 2500, Cf = (Re)0.25. 

The gas in the sealed tank is expanded as the liquid is drained from the tank. Assuming the 
expansion of the air in the sealed tank follows a polytropic process for a perfect gas and assuming 
PG<<PL, 

P1 v~ = Ct. [4] 

Where P1 is the pressure inside the tank, v G is the volume of gas in the tank and Ct is the initial 
tank constant. The total volume in the tank is given by 

v, = vG + VL. [5] 

The rate of change of liquid volume in the sealed tank is determined by using [4] and [5]: 

dYE ((71) I/" dPl 
d--f = n(Pi )~"+ 1)/, dt " [6] 

The rate of change of liquid volume in the sealed tank is determined by the liquid velocity and 
the tube cross-sectional area: 

d v  L 
d--7 = - V L A .  [7] 

DMF 18/6--M 
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Combining [6] and [7] gives 

where Ct is calculated from [4]: 

A. A, K. TEHRANI et  al. 

dPl n(Pl f f  +w" 
dt = (Cff/" VL A' [8] 

C, = P1 (q l"t) n ' [9] 

where q is the void fraction of the tank. The rate of change of the void fraction in the sealed tank 
depends on liquid velocity, tube diameter and the tank volume. Hence 

d t  = vL . [10] 

Equations [3], [8] a n d  [10] g ive  a set of three first-order non-linear differential equations for the 
liquid velocity in the tube, pressure in the tank, Pl, and the void fraction in the tank. The liquid 
downflow will stop when the velocity of the liquid reaches the "bubble formation velocity" (VB, fo~), 
reported by White & Beardmore (1962) as 

V /'0.345'X 05 
B. form = ~ - - - ~ 0  ) ( g O )  " . [11] 

The initial conditions for the first cycle were set at atmospheric pressure, an arbitrary value for 
velocity slightly higher than the bubble formation velocity and the initial void fraction in the tank. 
For subsequent cycles, the initial conditions for the pressure, liquid velocity and the tank void 
fraction were obtained from the previous liquid refill stage of the process. 

4.2. Bubble rise model 

In this stage the air forms a bubble in the tube and begins to rise, essentially filling the tube, 
figure 3. The behaviour lies in the slug flow regime and will be analysed using the drift flux model 
developed by Zuber & Findlay (1965). The drift flux relationships for the two-phase flow are: 

Jo = E(Coj + VGj), 

Ji. = (1 - ECo)j - EV~j, 

J=JG +Jc; [12] 

where j is defined as the volumetric flow rate divided by the cross-sectional area of the tube and 
E is the void fraction in the tube. The equation for the bubble rise velocity is 

dZbdt = Vb=TA = (Coj + Vcj)" [13] 

The mass of gas in the tube in terms of the tube void fraction and cross-sectional area is 

fo 'b Mc = Pc cA dZ. [14] 

The rate of change of mass of gas in the tube is 

dM~ 
dt = PGjGA. [15] 

 (f0" ) ~-~ EdZ =(jG)0. 

From [14] and [15], 

[16] 

The combined momentum equation for both phases of a slip flow in a vertical channel is given 
by 

c~ d f j2  j2 ,~ aP 
(~t (PoJo+PLJL)+~-z|PO--~ t t - - e ) )  = dZ g[P°E +(1--')PL]" [17] 
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Wall friction is neglected in this equation because the relatively slow bubble rise leads to small liquid 
velocities close to the wall. 

For 0 < Z < Zb, 

and for Z b < Z  < L ,  

Let 

Jo = E(Coj + Voj), 

JL = (1 -- EC0j) -- EVGj, 

J = J o  +JL;  

j G = 0 ,  

JL ---J. [18] 

j =j(t), 

E = E(Z, t). [191 

Integrating [17] over the length of the tube L, using [18] and [19] and simplifying for the volumetric 
flux, gives 

[PLL--Co(PL--PG)f:bE'dZI dj-~ -~" (P3--'P2)--PLg[L'~'(PG--1)f:bEdz 

"~- (PL - -  P G )  (Coj + VGj) ( J G ) o  - -  PLJ 2 

--(J'~)g • (J -J~)°~. [20] 
+ P ~  ~0 "epg ( l - E 0 )  

The same result may be obtained from a simple force-momentum balance over the tube and is 
slightly different from that reported by Dougall & Kathiresan (1981). It is thought that there is 
a minor error in their formulation. It should also be noted that the third term on the RHS of their 
corresponding equation becomes equal to zero for the present case as air enters the tube from the 
atmosphere. 
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From [4], the rate of change of pressure in the tank is given by 

dPt _ njAPt 
d t q Y t 

The equation for the void fraction in the sealed tank is 

d e t .  A =JL , 
or 

[21] 

dEt A 
= (J  - JG)  ~ .  [221 

The flooding condition, the counter-current flow limitation, is considered to provide a method 
of evaluating the boundary conditions at the bottom of the tube. The flooding relationship 
developed by Wallis (1969) is used: 

(j.)l/2 + m ( _ j ~  )ll~ = C, [23] 

where 

• , _ ]  [" PG ]1/2 an d • PL 1'/2 
JG-- GL~oL - po)gD J* =Jt [(Pt ----'-PG)gD " 

The flooding equation can be rewritten in terms of jr  and JG: 

\P--GG- 1) '/4. [24] 

The operational counter-current flooding curve is shown in figure 4 and the slope of this curve is 
given by 

-- [m ( pL)0'2512 
djo = (jo)o  

djL jOd~ - C(gD)O.25(_~G - 1) °2S" [25] 

The drift flux relationships of [12] can be rearranged in terms ofjL and j~: 

eCo . E VGj. [26] 
JG = (1 -- EC0) JL + (1 -- EC0) 

Differentiating [26] and substituting for djG/djL gives an equation for the drift flux velocity: 

( JG / , , [27] VGj-- Co --JL + ~ • 

\ djL ] ] 

Hence the void fraction in the tube below the nose of the bubble can be calculated from [12] and 
[27]: 

J~ £----- 
(c0j + voj) 

or 
1 

C o l  

\djL].] 

Equation [24] is solved numerically using Newton's iterative method to evaluatejo, and to calculate 
[25] and [28]. It is then possible to solve the five differential equations [13], [16] and [20]-[22]. 
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The initial conditions for this stage of the process are as follows: 

j~ = 0.0, 

zb =o.o,  

Zb E d Z  = 0.0. 

The pressure and tank void fraction are those of the end of the liquid refill stage. The bubble rise 
stage of the cycle is completed when Zb reaches the total length of the tube L. 

4.3. T a n k  repressurization model  

In this stage of the process the air in the vertical tube is released into the tank. Since this stage 
is so rapid, it is assumed that no liquid exists in the tube during the repressurization phase. 

The rate of change of pressure in the tank is given by 

dP,  nPl  VGA 
- -  = - -  [291 
dt £tVt 

The initial conditions are taken from the bubble rise stage of the process. From a simple energy 
balance the gas velocity in the tube is given by 

v~  = L( I + r o ) p o l  ' 

where 

P2 = P, + PLgL,  • 

[303 

In [30], it is assumed that the gas flowing in the tube discharges freely into the tank, where there 
is an entry loss coefficient Ko, and no recovery of energy of the gas leaving the tube. 

Wallis (1969) related the critical gas velocity at which no liquid could run down a tube by the 
empirical relationship 

Hence, from [30]: 

VG,,,,~ = 0 .525(pc ) - ' / 2 [gD(pL  -- PG)] '/2. 

P~ = (P3 - PLgL , )  -- 0.1375gD(1 + K¢) (PL -- PG). 

Equation [32] controls the boundary condition at the end of the process. 

[31] 

[32] 

4.4. L iqu id  refill model  

In this part of the process, the pressure in the tank has now increased to such a value that the 
liquid can enter the top of the tube, refilling it until no air remains. The rate of change of pressure 
in the tank is given by 

dP__~, = nP, V,A [33] 
dt Et vt 

The rate of change of bubble length in the tube is related to velocity by 

dZG = VL. [34] 
dt 

The rate of change of velocity in the tube can be derived using the force-momentum equation: 

dVL P~ V2 Z~A 
[ P L  L - -  (PL --  PG)ZG]  ~ = (P3 -- P2)  - - g [ P L  L - -  (PL --  PG)ZG] + [35] 

E t V t 
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The final term of  [35] accounts for the variation of  gas density as a function of  time and the friction 
term has been neglected. The pressure, /2 ,  at station 2 is given by 

P2 = P1 + P Lg L i .  [36] 

In [36], L1 is the height of  liquid in the sealed tank and is calculated by 

(1 - -  ~:t)V t 
L, = - - ,  [37] 

At, base 

where At, base is the base area of  the tank. 
The liquid velocity (VL) is set to zero for the initial condition of  this stage. This stage of  the 

process ends when liquid fills the length of the tube (ZG = 0.0) and liquid downflow begins. The 
cycle then repeats itself. 

5. RESULTS AND DISCUSSION 

All the differential equations were integrated numerically using the fourth-order 
Runge--Kutta-Merson method. The flooding criterion of  [23] for a sharp-edged tube was applied 
specifically for the slug flow regime, yielding values of  m = 0.6 and C = 0.63, which differ from 
the values averaged over a range of  flow regimes used by Dougall & Kathiresan 0981). Considering 
the time scale involved in the expansion of  the air in the tank, the process was assumed to be 
isothermal, therefore the polytropic index of 1 was chosen for this work. To be able to make 
comparisons between present work and that of  Dougall & Kathiresan (1981) it was decided to 
maintain the distribution parameter, Co, as 1 instead of  the more usually accepted value of  1.2. 
However, use of  the latter would marginally improve the accuracy of  the results obtained by the 
present work. The parameters used in the experimental and theoretical modelling are listed in 
table 1. 

The pressure fluctuations in the sealed tank were recorded experimentally and these are 
compared with the calculated pressure variations for 9.0, 15.9 and 19ram tube diameters in 
figures 5, 6 and 7, respectively, together with their frequency spectra. The general shape of  the 
calculated values [parts (a)] is in good agreement with the experimentally measured results 
[parts (b)]. However, the theoretical model predicts a cycle period which is approx. 5% shorter than 
the experimentally measured values. The small instabilities which occur during the experimental 
runs are not predicted in the theoretical approach and this increases the total inaccuracy to about 
10%. This indicates that the present calculation is an improvement on that of  Dougall & 
Kathiresan 0981) who found errors of  some 15% in the prediction of  the cycle period. These 
improvements are chiefly due to the more appropriate calculation of  wall shear stress in the laminar 
and turbulent regimes in the liquid downflow region, use of  the relevant flooding constants for the 
slug flow process and, more significantly, corrected and modified equations in the bubble rise stage 
of  the process. 

To identify the characteristic frequency of  each system the frequency spectrum of  the pressure 
fluctuations in the tank was obtained and typical results are shown in figures 5-7 [parts (c)]. It may 
be noted that the characteristic frequency increases approximately linearly with increase in the tube 
diameter but, no firm conclusion can be drawn because of  the limited range of  data available in 
this work. The presence of  harmonics in the frequency plots is an indication of  instabilities in the 
process and is exaggerated because of  the small number of  samples involved in each run. 

Figure 8 shows the predicted cyclic growth and collapse of  the gas bubbles. This plot indicates 
that the bubble rise stage occupies a comparatively short portion of  the total process--somewhat 

Table 1. Parameters  used in the calculations 

L = 0.6 m D = 9.0 to 25.0 mm 
pL = 1000kgm -3 po= 1.2 kgm -3 
v t = 7.688 x 10 -3 m 3 K c = 0.5 
m = 0.6 n = 1.0 
C = 0.63 C o = 1.0 
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less than 20% of the cycle time. It is only during the bubble rise stage that the steady 
counter-current flooding limitation (CCFL) controls the flow rate and during this time very little 
liquid drains from the tank. The theoretical and experimental variation of  the void fraction in the 
closed tank draining through the 15.9 mm tube is shown in figure 9. The plot indicates a good 
correlation between the predicted and the experimental values; however, discrepancies arise due to 
random instabilities within cycles which are not predicted in the model. 

It was observed experimentally that the time taken for each cycle increased as the tank emptied. 
This is due to the fact that, with each cycle, a certain amount of  water flows out of  the tank, the 
air enters and the volume available for expansion in the next cycle is increased. Hence the air is 
expanded less rapidly in the next cycle. This allows more water to discharge and increases the period 
of  the cycle. However, the cycle time increase is small and non-linear with respect to the air volume 
increase. This behaviour is predicted by the present theoretical model. 

It was also observed that, for most of  the tube diameters tested, it takes roughly the same number 
of  cycles to drain a given amount of  water from the tank independent of  the discharge area. 
However, for the 25.4 mm dia tube, the bubbles did not fill the whole pipe and the pattern was 
no longer slug flow. The regular oscillations in the system were suppressed by a continuous, 
churning, counter-current flow in the tube and the flow rate out of  the tube became erratic. In later 
experiments shorter lengths of the 25.4 mm dia tube were used to correspond to tube volume/tank 
volume ratios equivalent to those for the 19.6 and 15.9 mm tubes, respectively. For these it was 
found that a regular oscillatory pattern emerged but, in these cases, the liquid refill stage of  the 
process was not able to reach the full length of the drain tube. It is intended to investigate further 
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the possibilities o f  oscillatory counter-current  flow for a wider range o f  tank and tube volumes. 
Dougal l  & Kathiresan (1981) reported that, for their 9.5 m m  tube, surface tension dominated  the 
process and the bubble did not  rise at all. They reported an operat ing E6tvos number  (ratio o f  
buoyancy  forces to the surface tension) o f  6.0, which is close to the critical value o f  4 given by 
White  & Beardmore  (1962) as the limit below which the bubble does not  rise. Such difficulties were 
not  experienced in the present work,  since the E6tvos number  for the 9.0 m m  tube was o f  the order 
o f  10. It  is however  acknowledged that  factors such as tube surface roughness and cleanliness might 
have had some effects on the critical E6tvos  number.  
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Figure 9. Comparison between exprimental and, both steady- and unsteady-state models, for theoretical 
void fraction variation in the sealed tank draining through the 15.9 mm tube. 
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To compare the variation with time of the void fraction in the sealed tank for the oscillatory 
flooding condition with that assuming steady counter-current flooding, [23] of Wallis (1961) has 
been used. Since the tank is emptied to atmospheric conditions, the process can be assumed to 
involve equal volumetric flows of air and water. For this situation the ratio of the superficial 
velocities of the two phases is thus proportional to the density ratio of  the two fluids. This results 
in (j.)l/2 being 0.186 times (j*)~/~, so that the steady-state CCFL gives 

C 2 

J~" = (m + 0.186) 2, [38] 

where the values of C and m depend on the detailed flow regime under which flooding takes 
place. 

The values of j~ for two particular flooding conditions have been used to calculate the time 
variation of the tank void fraction on a non-gulping basis and the results are shown in figure 9. 
Two straight lines represent use of the flooding parameters proposed by Wallis (1969) (m = 1.0 and 
C = 0.725) and those used in the present calculations (m = 0.6 and C = 0.63) and are compared 
with results from the full model (including gulping) and the "smoothed" variation of the tank void 
fraction obtained from the present experiments. This clearly demonstrates that use of the 
steady-state CCFL model gives a large over-prediction of the tank emptying time compared with 
the oscillatory model, which takes account of the gulping phenomena and agrees reasonably closely 
with the experimental results. 
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Figure 10. Comparison of predicted pressure variation in the scaled tank draining through the 15.9 mm dia 
tube for different tube lengths. 
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As a further demonstration of the use of the model, the theoretically predicted influence of tube 
length on cycle time is shown in figure 10. This clearly suggests that increase in the tube length 
results in an increase in the cycle period and further experiments are planned to test this prediction. 

6. CONCLUSION 

A mathematical model has been developed to predict the pressure fluctuations in a draining, 
closed tank. This agrees well with experimental data, which demonstrate the oscillatory counter- 
current flow which gives rise to the fluctuations. Such oscillations dominate the system behaviour 
and reduce the significance of the stable CCFL condition, as this occupies only a small portion 
of the cycle time. 

In the experiments, for tube diameters above 25.0 mm, the flow was no longer oscillatory and 
a continuous churning counter-current flow was observed. This is not predicted by the present 
model which makes its application limited to tube sizes between 8.0 and 25.0 mm dia. However, 
it should be noted that the calculations apply for air and water at atmospheric pressure and the 
range of applicability is likely to be different for water and steam at higher pressures, as may be 
encountered in some industrial cooling systems. 
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